Зарезка боковых стволов скважин

Особенности зарезки боковых стволов на месторождениях нефти и газа

Технология зарезки боковых стволов

Требования к выбору скважин для бурения в них горизонтальных стволов:

1. Все работы по зарезке и бурению БС представляются следующими основными этапами:

— выбор основных стволов для заданного множества забоев БС;

— выбор интервала вырезания «окна» (секции) в эксплуатационной колонне;

— расчет траектории БС;

— вырезание «окна» (секции) в эксплуатационной колонне;

— зарезка и бурение бокового ствола;

— закачинвание бокового ствола.

2 При выборе скважины для бурения из них боковых стволов необходимо учитывать текущие характеристики эксплуатационной колонны, качество ее крепления, фактическое пространственное положение ствола скважины:

состояние эксплуатационной колонны выше интервала зарезки бокового ствола по данным соответствующих приборов и опрессовки должно быть технически исправным;

необходимо обладать достоверной информацией о траекториях стволов подобранной и соседних с ней скважин для предотвращения пересечения стволов.

При этом следует руководствоваться следующими основными требованиями:

пространственное положение интервала забуривания должно быть оптимальным с точки зрения экономической целесообразности. Величина отхода точки забуривания до начала эксплуатационного забоя должна быть минимальной, но не менее величины, определяемой допустимой интенсивностью искривления бокового ствола, максимальный отход от точки забуривания до начала эксплуатационного забоя обусловливается техническими характеристиками буровой установки и вероятной глубиной забуривания;

допустимая величина разности азимутальных направлений основного и нового стволов не должна превышать величины, определяемой техническими возможностями бурения бокового ствола;

траектория бокового ствола должна иметь минимальную вероятность пересечения с существующими и проектными стволами соседних скважин;

поиск оптимальных вариантов, отвечающих технико-экономической целесообразности использования обводненных и бездействующих скважин для зарезки и бурения боковых стволов, должен осуществляться, как правило, с использованием автоматизированных программ.

Одним из условий эффективности разработки месторождения БС является качественное проектирование их траекторий.

Проектирование профиля заключается в формировании регламентирующих параметров, выборе типа профиля, определении комплекса параметров, необходимых для его расчета, построении оптимизационной процедуры расчета выходных параметров траектории БС.

При проектировании БГС следует учитывать вероятность пересечения соседних стволов, определяемую с помощью автоматизированных расчетов.

Если зенитный угол составляет 55-75°, скважина считается пологой, если 75-97° — горизонтальной.

В качестве основных критериев выбора профилей принято считать:

форму профиля бокового ствола;

радиус искривления при выходе на горизонталь;

угол охвата резко искривленного участка.

По этим признакам в зависимости от способа бурения и используемых технических средств можно выделить три группы характерных профилей боковых стволов, область их применения и рациональную технологию их реализации (рис. 2.2):

I — трехинтервальный профиль;

II, III — двухинтервальный профиль;

IV — четырехинтервальный профиль.

Рис. 2.2. Типы профилей:

I — трехинтервальный; II, III — двухинтервальный; IV — четырехинтервальный; участки: 1- набора зенитного угла; 2-стабилизации; 3- падения зенитного угла; 4- выхода на горизонталь; 5- горизонтальный.

Профиль БГС состоит из двух сопряженных между собой частей: направляющей и горизонтального участка.

Под направляющей частью профиля понимается часть бокового ствола скважины от ее устья до точки, являющейся началом горизонтального участка. На стадии проектирования бурения началом горизонтального участка считается точка входа в заданный цилиндр допуска. Высота цилиндра — коридор проводки горизонтального участка, радиус окружности (круга допуска) — максимально допустимое отклонение фактического забоя от проектного. Эти параметры определяются с учетом технологических возможностей бурения, исходя из последствий в нарушении сети разработки месторождения.

В практике бурения боковых стволов средние радиусы искривления на участке набора зенитного угла в зависимости от геологических условий и технического оснащения бригад составляют 60-660 м. Этот показатель также зависит от решаемой с помощью БС задачи. В одних случаях, например при наличии на забое аварийного инструмента, радиусы могут составить малую величину, позволяющую реализовать небольшой отход от старого забоя. В других случаях, например при полном обводнении скважины, радиус искривления составляет большую величину с целью максимального отхода от конуса обводнения старого ствола.

В настоящее время разработано более пяти технологических способов бурения боковых стволов (рис. 2.3). При анализе способов бурения было выявлено несколько проблем, возникающих в процессе строительства боковых стволов.

На части скважин для успешного отхода от основного ствола в заданном направлении устанавливается клин-отклонитель (рис. 2.3). Он должен быть устойчивым в стволе скважины и не проворачиваться под воздействием нагрузок со стороны режущего инструмента. Схемы также показывают необходимость фрезерования значительных объемов металла эксплуатационной колонны (рис. 2.3 а, г). Поэтому требуются надежные вырезающие устройства с повышенной прочностью режущих элементов, позволяющие фрезеровать колонну при разных зенитных углах основного ствола.

Рис. 2.3. Технологические способы забуривания боковых стволов:

а — вырезание окна в эксплуатационной колонне; б- вырезание части эксплуатационной колонны; в — извлечение верх­ней незацементированнои части эксплуатационной колонны; г — комбинированный способ бурения бокового ствола; д — бурение бокового ствола с открытого забоя; 1 — клин-отклонитель; 2 — цементный мост

Бурение скважин на старых месторождениях ранее проводилось без цементирования основной части ствола. Это упущение может привести к экологически опасным последствиям. Бурение бокового ствола позволяет осуществить подъем верхней части колонны после вырезания небольшого кольцевого окна, что существенно уменьшит объем фрезерования (рис 2.3 б,в).

Для выхода бурового инструмента из старого ствола необходим также цементный мост высокой прочности. Межпластовые перетоки при установке цементного моста вместо клинового отклонителя приводят к заметному снижению механической прочности цементного камня. Это затрудняет, а в ряде случаев не позволяет осуществить выход долота из старого ствола.

Процесс крепления хвостовиков в БС сопровождается специфическими особенностями:

малые кольцевые зазоры между стенками скважины и обсадной колонной (в 2-3 раза меньше, чем в обычных наклонно направленных скважинах диаметром 215,9 мм);

большая интенсивность набора кривизны ствола скважины, которая может достигать 10°/10 м и более;

низкие давления в пластах, выработанных путем заводнения, и высокие в пластах, расположенных как выше, так и ниже продуктивных объектов.

В связи с указанными выше особенностями возникают дополнительные проблемы, требующие повышенного внимания:

-трудность прохождения колонн к забою;

-ограничения к жесткости колонны;

-опасность прорыва воды в скважину через интервал стыковки хвостовика с предыдущей колонной (колонной основного ствола), т.е. через голову хвостовика;

-возможность притока воды с забоя при открытом стволе;

-трудность размещения в затрубном пространстве каких-либо устройств (центраторов, якорей, пакеров);

-невысокая степень вытеснения глинистого раствора цементным;

-более высокий уровень давлений в процессе продавливания, что может вызвать нарушение целостности пластов и поглощение цементного раствора (в том числе продуктивными пластами).

Поэтому большое значение приобретает управление реологическими и тампонажными свойствами растворов, физико-механическими характеристиками цементного камня и гидравлическими параметрами потока в заколонном пространстве.

В связи с этим научно обоснованное проектирование и реализация гидравлических режимов цементирования эксплуатационных колонн-хвостовиков является важнейшим требованием для обеспечения надежности разобщения нефтеводоносных пластов при креплении БС (в условиях малых кольцевых зазоров и большой кривизны ствола) и максимальной их продуктивности.

Многочисленные исследования отечественных и зарубежных специалистов и производственная практика показывают, что максимальное замещение глинистого раствора тампонажным в заколонном пространстве происходит при турбулентном режиме его течения и использовании буферных жидкостей.

Для оценки достижения турбулентного режима определяется критическая скорость восходящего потока.

Важно обеспечить турбулентный режим течения глинистого раствора, буферной жидкости и цементного раствора при прохождении их в интервалах продуктивных горизонтов, осложненных, как правило, кавернами, за весь период движения этих жидкостей в заколонном пространстве. На конечном этапе движения цементного раствора его течение может происходить при ламинарном режиме из-за роста давлений на устье скважины. Для фиксирования давления «стоп» скорость продавливания резко снижается, течение тампонажного раствора может происходить при «структурном» режиме, т.е. при практически не разрушенной (восстановленной) структуре. На этой скорости продавливается 0,5-1,0 м продавочной жидкости.

Ввиду малого объема продавочной жидкости при цементировании хвостовиков в БС цементировочные агрегаты должны быть установлены строго горизонтально. Определяемые временем крепления значения реологических параметров в расчетах берутся на конец продавки тампонажного раствора.

В чем назначение зарезки?

Зарезка применяется для того, чтобы успешно вернуть в рабочее состояние любую из скважин, которая не может быть задействована из-за геологических и технических условий. Благодаря методике удается задействовать в работу те участки пласта земли, из которых трудно добывать ресурсы по многим причинам. Применим метод в основном для месторождений газа и нефти, а также для воды, что повышает работу в малодебитных местах.

Чаще всего данный метод применяется, как аварийная мера. При этом осуществляется бурение дополнительных стволов. При таких боковых зарезках все расходы очень быстро окупаются, и это значительно дешевле, чем производить поиски места залегания необходимого сырья, и бурить новую шахту. Сети новых стволов бурятся на используемых месторождениях, поэтому данный процесс непростой.

Все работы должны производиться только профессионалами, имеющими большой опыт в данном деле. Это позволит избежать всевозможных рисков и проблем. Чтобы не было пересечения основных и боковых шахт, необходимо точно рассчитать траекторию новых скважин. А такие расчеты возможны только при помощи высокотехнологического оборудования и обширных познаний в сфере создания дополнительных скважинных стволов.

Как проводится процесс?

Как уже говорилось выше, методов проведения работ по созданию дополнительных скважин достаточно много. Давайтерассмотрим один из них, с использованием специального устройства для боковых бурений стволов. Он заключается в применении проходного якоря, который помещается в пространство между корпусом обсадных и боковых колонн. Якорь должен быть диаметром меньше стволов шахт, с которыми будет проводиться работа.

Зарезка делается в определенной последовательности, только так возможно её успешное проведение.

Якорь опускается, и создается переизбыток давления в пустоте скважин, после чего он отсоединяется от прикреплённой к нему посадочной втулки. Гироскопическим стержнем инклинометра определяется местоположение паза скважин. В соответствии с этим выставляется направление клина и глубина зарезки. После этого проделывается стандартная процедура бурения стволов.

Если появится необходимость, клин можно в любой момент извлечь из скважин и сменить его направление. Таким образом работа может быть произведена под любым требуемым углом, в разных направлениях. В данном случае требуется проведение 2-х заходов, но по данной методике можно осуществить все действия и в один заход.

Чтобы сделать зарезку за один спуск, надо соединить отклонитель с профильной трубой. Затем проводится её гидравлическое сцепление с инструментом для бурения через специальные трубы, расположенные на корпусе фрезы. Это упрощает весь процесс и увеличивает прочность бурового оборудования. В связи с этим метод не всегда применим там, где требуется гибкость.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *